THERMOPTIMe

REFERENCE

MANUAL

VOLUME IV

EXTERNAL DRIVERS
TECHNOLOGICAL DESIGN

OFF-DESIGN CALCULATIONS
VERSION JAVA 1.7

© R.GICQUEL NOVEMBER 2010

CONTENTS

L INTRODUGCTIONcctittitet ittt sttt e ettt te st st e a1 e st te a1 et e te st et e te st et e besb e st e be st eseebe st eseebe st eseate st e st etesbenentenrens 4
2 DRIVING THERMOPTIM ..ottt sttt be et sb et et s bt tesbe st etasbe st etesaesaetesbesaetaate e 5
2.1 OVERVIEW ...ttt ettt et te st e ste et e emeeemeeeseees e e st e se e seeateemteeaeesae e st enteemseemseeneeeseenbeenseenseeneesneesneenneanseenes 5
2.2 COMPUTER IMPLEMENTATION.coittettetteuteauteattesttenteenseenseemtesatesueesueenstenteenseessesseenseenbeenseensesneesstesaeenseanseenes 6
2.2.1 Creation of the class, VISUAL INTEITACE ..ot e 6
2.2.2 Recognition Of COMPONENTS NAMEScveiueiieiiieieeieiese e st se st e e e e e et besnesre s e enee e enseseesrenees 7
2.2.3 Calculations and QiSPIAYceiirieiiiriei ettt et b e et r et 7
2.2.3 L080ING @ AFIVET ..ottt b et b e bbbt btk b e bbbt e et e e bt et e eb e e et e e b e ebeabe e 8
S TECHNOLOGICAL DESIGN ..ottt ettt ettt st sb et b ettt seebesbeneetesbe e 9
3.1 COMPONENT TECHNOLOGICAL DESIGNcoutteuirtitenteuetentesessenteseasentestasensestasensesessenseneasenseneasenseneesenseneesensens 9
TN N o 1T =) £ P o T U SOO ST 9
3.1.1.1 CalCUIALION «.eiieiieie ettt et e et e et e et e e e bt e estaeeabeeesbaeeaseesasaaasseesssaaasseensaeensneesseeseeenses 9
3.1.1.2 Multizone heat EXChaNGEISc.eeiuiiiieiieie ettt ettt sttt ettt e eneesae e e eneeas 10
3.1.1.3 GEOMELIIC SEEHIME ..eeeeeeietietieie ettt ettt ettt e st e st e te et et e e st e ss e e beenseenseeneesmeesneenseeneeenseeneenneans 10
3.1.1.4 Correlations for calculating the heat exchange coefficients.............ccocevveiiiieiieneiiie e 11
0t I O] 141 o] 151570 OSSR SSR 11
3.1.2.1 VOIUMEIIIC COMPIESSOTS. .. .eeveereeurieereerreitresteesseesseesseesseeseesseesseesseessesssesssesssesseessesssesssesseessesssessens 11
3.1.2.2 TUIDOCOMPIESSOTSvvevreeeeeeenieeteeteeeteettesteesseeseesseesseeseesseesseesseessesssesssesssesseesseessesssesseessesssensens 12
0 0 B 10 1 USRS 13
3. LA EXPANSION VAIVES ...ttt b bbb bbbtk b bt b et abe et nne e 13
3.2 COMPUTER IMPLEMENTATIONcooutitiritenuteteeteeteesenttenteenteeseessesmsesueesseenseenseensesusessaenseesessesmnesmeesseensesnne 13
3.2.1 GENEIAl PIINCIPIESvee ittt bbbttt bbbt bt e bt b e e e be b b nes 14
2.2 SETUCTUIE ... ettt etttk etk ekt e e bt ae e e Rt e eb £ e bt e a bt ek b e eh b e eb e e eE e e ebe e b e e aeeehe e ene e bt enbeanbennbenbeeas 14
3.2.2.1 VOIUMEIIIC COMPIESSOTS. ... eeueieueientieuteeuteettesteerteenseeeeeneesseesseaseenseensesseesseeaseeaseeseensesneesseenseanseansens 15
3.2.2.2 HEAt @XCHANZETSeeuieiieieeiieeiie et ie et ettt ettt et e et e bt enteeseesseesbeenseeneeeneesseesseaseensenseenseenseeneesneans 16
3.2.3 Technological and SIMUIALION SCIEEN..........ccviieieieciee e sreees 19
3.2.4 Generic driver for creating technologiCal SCrEENS........ccccvviiviiririe e 20
3.3 EXAMPLE OF HEAT EXCHANGER DESIGNcoittiittetieuienttenttenteeteetesitesitesteenteenteestesseesseesseenseensesmsesaeesseenseenee 21
3.3.1 Presentation and FESUILS.........cviiiieieieie sttt ettt e e e s e e e te e srenes 21
3.3.2 Driver IMPIEMENTALIONcoviiiiiieie ettt b etk b et sb e et bbb 23
3.3.2.1 INTHATZATIONSecviieeieeietieie ettt et et et estte st e be et e esbeessessaesseesseessesssessaesseessesssesssesseenseensennsens 23
3.3.2.2 CalCULALIONS.eeieeieiieiiete et ste sttt et e et e et et e et enteesteesaesseesseenseenseensesneesseenseeseeseenseenseensennaens 23
TR TR 0 = 7 T 3 o TSP 24
A OFF-DESIGN ...ttt e b e et b e ekt b ettt e bt ekt s bt ekt e b e st ekt s b et bt e b e e b e ebe et e b e re b e 24
L 2 N Y 12) PSS RPRRPRRSOR 24
AL L RESUIES ..ttt ettt et b e et b e et bR e Rt E e Rt e Re Rt e R et e Eeebe e ere b e renre e 25
4.1.2 Driver IMPIEBMENTALIONoiiieiecieiec ettt st e a e et e et e besbe st e e beeree e e besresrenrs 26
4.1.2.1 INTHALZATIONSveevveeeieieieiteecteeteete et e et e ete et e et e etsesteeste e beesseesseessesseesseesseesseesseessaseesseessesssesseesseesses 27
4.1.2.2 CalCUIALIONS......vievieiieitiete ettt ettt ettt e e et eeteesteeste e beesbeesseesseese e seesseesseessesssesseessesssessesseenseennas 27
4.1.2.3 BACKUD wveovvieiiieiiietiecte ettt ettt ettt ettt et et b e te e te e b e eabeeraeeaeeeteebeenbeeabeetbeeraeeteenreents 29
4.2 USING THE MODEL TO SIMULATE THE FILLING OF A COMPRESSED AIR STORAGEc.ccvcoveveieriereneereerenenans 29

In many cases, the equations describing the off-design behavior of an energy system are nonlinear, so that
their resolution is a difficult problem, particularly when the number of unknowns is high.ccccccce..e. 30
4.3.1 Presentation Of MINPACKcoiiiiiii et bbbt sbe b 30
4.3.2 Implementation Of MINPACK...........c.ciii e e 30
A.3.3 EXAMPIC. ...t bbbt h et b bR e R £ R £ e £ et R e bbb e b e Rt e Rt e e e bbb e 30
APPENDIX : CLASSES EXTPILOT, POINTTHOPT, CORPSTHOPTccciiit et 33
CLASS EXTPILOT ...ttt ettt ettt ettt ettt ettt ettt e st ees e s bt et e et e e et emee s st e ese e st et e emeeeneeeseenseeseenseensesneeeneenns 33
(00N {0 1 M 5 (0) 2 SRRSOt 35
CLASS CORPSTHOPTc.teuttetteetteitterttete ettt st st te et et eateee e ebeesb e e b e embeemaesate s bt e sbee bt emteenteeseeebeenbee bt enbeenbesatesaeenne 35
CLASSES FOR TECHNOLOGICAL DESIGNcciiiiiiiiisisese et 37

THERMOPTIM volume 4 reference manual november 2010

CLASSES FOR TURBINESuuttttiiitiiiiitieeteeeeeeeeetaeeteeeeeseassaasteeeesssasssaseeseessasssssseeseesssssassseseessssssssaseeessssmssssseeeees 37
TECHNOSIMPIETUID ...ttt et eere e s e e e e seeeteeneer e e e e teneenrenrn 37
TEChNOMUILISTAGETUID et st et e neera e e e neenee e e aeneesrenrs 37
=03 1T U o 38
Class MultiStageMappedTUIDINE. ..ottt 38

CLASS TECHNONOZZLEuuvvvviieeeeeecieeeeeeeeeeeeeee e e e e et eeetaaaeeeeeeeeestaareseeeeeeesaaaseeeseeseasataeseeeseensiasaareeeseennnstrereseeens 40

CLASS TECHNOTURBOQCOMPRccootttiiieeeeeieiieeeeeeeeeeeeaeeeeeeeeeesaareeeeeeeeesaaseetseessestatseseeeseeesiasrereeeseeesisrrereeeeens 40

CLASS MULTISTAGEMAPPEDTURBOCOMPRcvoiiiiiiiiiirrieeeeeeeeiiereeeeeeeeeitareeeeeeeeeeeasseeeseeeeesssseeesessessinsneseseeens 41
Remarks on the refernce values of mapping fileS.........coo i 42

© R. GICQUEL 1997 - 2010. All Rights Reserved. This document may not be reproduced in part or in whole
without the author’s express written consent, except for the licensee’s personal use and solely in accordance with
the contractual terms indicated in the software license agreement.

Information in this document is subject to change without notice and does not represent a commitment on the
part of the author.

THERMOPTIM volume 4 reference manual november 2010

1 INTRODUCTION

In this Volume 4 we present a series of developments that have been made to allow completion of the
Thermoptim core in order to address much more complex modeling than those presented in the other reference
manuals, and in particular to :

- drive Thermoptim calculations taking control on the automatic recalculation engine;
- perform technological design and conduct studies of the behavior of systems operating off-design.

Given the extent of the area corresponding to these problems, we do not claim to provide them with
comprehensive answers: we limit our ambition to provide a few relatively simple examples illustrating the
potential of drivers and tools dedicated to technological design and off-design operation.

Advanced users willing to solve specific problems will have the task of building their own relevant models. Let
us emphasize that this is an extremely interesting though very difficult topic, little addressed so far, probably
because of lack of an appropriate tool, but essential if one wants to really understand how real machines behave.
This document being a software reference manual, we will not develop thermodynamic analyses. We refer to
Volume 3 of the Energy Systems' book the reader interested in further developments in this regard.

Until 2008, the the component models used in Thermoptim were rather simple: the phenomenological models
built certainly allowed to study the thermodynamic cycle of the technology under consideration, but not to
perform a specific technological design, or simulate performance in off-design operation, the latter two issues
being much more complex than the first. To address these issues, we have been led to distinguish two levels in
the models (their name was chosen to be as clear as possible, but it is not usual):

- phenomenological models, the only so far implemented in Thermoptim allow accurate calculation of
thermodynamic cycles, regardless of the choice of a particular component technology;

- technological design and off-design operation simulation models not only provide the same results as
the previous ones, but thanks to the inclusion of additional equations specific to the technologies
chosen, allow more precise sizing of the various components and, once the technological design made,
enable you to study the behavior of the system considered outside the operating conditions for which it
was designed.

Such models are for example necessary when trying to assess the performance of an existing facility, which
often operates under conditions different from those for which it was designed. These audit issues (especially
focused at guiding improvements) intersest an increasing number of organizations, industrial or others.

The analysis of energy systems in off-design operation poses many problems much more difficult to resolve than
those we encounter when we merely study the thermodynamic cycles in purely phenomenological terms,
regardless technology choices.

Make clear that what we call off-design operation is steady-state operation of a facility for operating conditions
other than those for which it has been designed: it is not the study of fast transients resulting for instance of
control actuators.

In order to be able to design technological components it was necessary to refine the phenomenological models
used in the Thermoptim core, by supplementing them appropriately.

As we shall see in this volume, the implementations of these new Thermoptim features are mostly made in the
form of external classes, which provides flexibility for users to customize (see reference manual volume 3).

The classic phenomenological version Thermoptim remains unchanged: it is only complemented by a software
layer able to take into account technological design and off-design operation models.

' GICQUEL R., Systémes Energétiques, Tome 3 : cycles et modélisations avancés, systémes innovants a faible
impact environnemental, Presses de 1'Ecole des Mines de Paris, janvier 2009.

THERMOPTIM volume 4 reference manual november 2010

Technological design classes supplement the core allowing the consideration of the equations which are specific
of the technological choices made, such as calculating the heat transfer coefficient U of a heat exchanger, or a
compressor’s volumetric and isentropic efficiencies.

Drivers ensure the systemic coordination of the various component calculations. They look for a set of coupled
variables consistent with physical and technological problems posed, and allow to change the settings of a
Thermoptim project.

Note that all the setting options available in the usual Thermoptim screens (phenomenological) are not
necessarily valid in off-design operation, making it important to include in the external classes that are
developed, tests to verify compliance with the assumptions of the models selected.

2 DRIVING THERMOPTIM
2.1 Overview

Driving Thermoptim has two main applications:

- firstly, facilitate the development of external classes by testing them gradually as they are defined;

- secondly provide access to all unprotected libraries for different uses (coordinate calculations of various
components coupled together, make external treatments between recalculations, guide a user in a
training module...).

To enable the external control, the main class of the simulator project can be subclassed, and a number of
unprotected methods can be overloaded to define processings complementary to those of the core. Details of
these methods are given in reference manual volume 3 annexes.

There are two ways to drive Thermoptim: either totally from an external application that instantiates the software
and makes the settings, or partially, for a given project. An example relating to the first case is given in Volume
3. It is used to create the external classes and test them from the development environment external classes. It is
presented in Section 6, which explains how to use a freeware software to dispose of a user-friendly development
environment. We do not address this issue in this volume.

In the second case, on which we focus here, a specific driver class is assigned to a given project, and this class is
instantiated when loading the project. It can then coordinate the recalculations of the project according to
specific rules. The driver class is an extension of extThopt.ExtPilot, which derives from rg.thopt.PilotFrame. To
associate it to the the project, an external class must be loaded into Thermoptim. Once the project is open, you
must select the driver class that is associated with line "Driver frame" of the simulator Special menu (see Section
2.2.3). When the project is saved, the name of the driver class is saved so that it can be instantiated at a later
loading. It is possible to save the driver data as well as those of external components, so that simulation results
can be subsequently retrieved by the driver.

As discussed in connection with the examples included in this volume, this Thermoptim feature is extremely
powerful because it allows you to customize the use of most elements of the software package, at the price of a
quite reasonable programming work.

In this section, we present a driver that is used to calculate the energy balance of a solar Stirling engine. This is a
very simple example which allows to introduce this type of external class without having to dwelve into the
details of a complex thermodynamic model.

A Stirling engine is an engine of a particular type, working in closed systems, which implements a cooled
compression and a heated expansion, so that the usual Thermoptim energy balance indicators cannot be directly
used: the purchased energy is the sum of the heat supplied to the heat source (in this example a solar
concentrator) and that provided to the heated expansion.

THERMOPTIM volume 4 reference manual november 2010

Solar Stuhng motor

|
a.il' Ll
m=10, m=0,1 m=10,1
T =114 23 °C exchalzer 17 = 513 34 ¢ Parabolic collectory = gy + 2
COTHETEs Sion p = 5608 bar P = 5698 bar p = 77,74 bar expansion
H = &0 94 LTz H = 500,79 kTkg H= 83233 klkg
TeZenergor
m AH 94150
r 3
Ahis 4
s Y R Y
m=10,1 ‘”I ‘”I
T=60°C m=0,1 m=0,1
p=Tha ool T =a232] o ednger 2 T = 61299 °C
H = 3527 kg P =917 bar P =917 bar
H= 200,10 klkg H = 620,05 Llkig

Figure 2.1 : Solar Stirling generator

The objective that we assign the driver is to provide a synthesis of the energies involved in the motor as heat or
mechanical power, and calculate the cycle efficiency. Figure 2.2 shows the type of screen that you can imagine.

solar Stirling energy balance

power heat
compression 22320 T | Eaicuinta
expansion 49141 | |33ze0 |

solar collector 32.255

external cooling -20.303

net power - 26821 efficiency
total heat supply F5.535 W

Figure 2.2 : Driver screen

2.2 Computer implementation

2.2.1 Creation of the class, visual interface

To create an external driver, simply subclass extThopt. ExtPilot. Achieving the visual interface poses no
particular problem and we do not comment on here.

The constructor must end with a string specifying the code that will identify the driver in the list of those
available:

type = "stirling";

It is also recommended to document the class:

THERMOPTIM volume 4 reference manual november 2010

public String getClassDescription(){
return "driver for a simple Stirling motor\n\nauthor : R. Gicquel february 2008";

}

2.2.2 Recognition of components names

It is possible to automatically recognize the names of the various components constituting the model, sorting
them by type, which gives the driver greater genericity than if these names are entered as a String in the code.
This is done by methods init () and setupProject (), which use methods to access the names of the components of
the diagram editor and the list of external classes available (for the external process representing the
concentration collector). Caution: if an appropriate diagram is not open in the editor, lists of components are
empty and initializations cannot be done properly.

public woid inici()d{

izInitialized=trus;

proj=getProjet () :

setupFProject)

Fi0n récupére la liste et le type des composSants présents dans 1l'éditeur de schémas
JfRetrieves the list and the type of components in the diagram editor

String[] listCowp=proj.getEditorComponentLisc () ;

cowposant=new String[listComp.length]

nomComwposant=new 3tring[listComp. length] ;

J/on en extrait les noms des transfos de compression et de détente
Jfgets the names of compression et expansion processes
for (int i=0;i<listComp.length; i++){
composant[i]=Util.extr_wvalue(listComp[i], "type'):
nomComposant[1]=0Util.extr_value (listComp[1i], "name"):
if (composant[i] .equals ("Compression™)) compressorName=nomComposant [i]
if (cowposant[1i] .equals ("Expansion™)) expansionName=nomComwposant [i]
H
fitest de cohérence (des messages d'erreur plus précis seraient =souhaitables)
Jfoonsistency test (error messages should he an improvement)
if i {'expansionMName.equals (™)) && ['compressorName .. equals (™)) && isBuilt) isBuilc=true:
if(i=zBuilt)ishow();//on n'ouvre le pilote gque Si Za structure est correcte
Jfthe driver cannot be open if itz structure is wrong

wold setupProject(]{
ffon récupére ici 1l'instance de la transfo externe du capteur solaire
//Retrieves the instances of the solar collector external class
Vector vExt=proj.getExternalClassInstances()://Vector contenant les classes exXternes
int j=0;
for {int i=0;i<vExt.size(];1i++)1
Chiject[] obj=new Chject[a]:
ohi=(Ckhject[]) vExt.elementdt (i) ;
ExtProceszs ep= (ExtProcess)ob]j[1];
if (ep instanceof SolarConcentratorCo) {
collector=(3olarConcentratorCC)ep;
collectorName=collector. getlame () 2
J++:

i
if (j==1)isBuilt=true;//test de cohérence du pilote par rapport au modéle
ffoonsistency test [error messages should be an improvement)

2.2.3 Calculations and display

Once the names of the various components are identified, we access their properties through the Project method
getProperties(), which provides all the values you need.

As shown in the code, the execution of an external driver poses no particular problem. This one is particularly
simple and simply calculates the energy balances for which the default Thermoptim calculating methods are
inappropriate. It would be quite possible to complicate it slightly, so that it could update the simulator to perform
the recalculations of the model before establishing the desired balance. We will present further examples
involving such features.

THERMOPTIM volume 4 reference manual november 2010

vold bCalculate actionPerformed|java.awt.event.ictionEvent event) {
if(!izInitialized) initi)://la premiére foi=, on initialise, car il faut un ConsStructeur Sans argument
ffpour instancier la classe par le RMI
fithe initialirzation iz wade during the first call, as the constructor
/{must have no argument hecause the class is instanciated by the RMI

String[] args=new String[2]:

args[0] ="process";

args[1l] =compressorlame; //compression

Vector vProp=pro]j.getPropertiesiargs):;

Ftring smont=(3tring)vProp.elementidt(l);//point =smont //inlet point

String aval=(3tring)vProp.elementlht(2)://point awval /foutlet point

Double f=(Double)wFrop.elementlit (4]

double deltalUcompr=f.doubleValue()://puissance compresseur //compression power
f=(Double)vProp.elementlt (12) ;

double Quompr=f.doubleValue();:;//chaleur compresseur //compressor heat

args[l] =expansionName://détente //expansion
vProp=proj.getProperties (args) ;

amont=(3tring) vProp.elewmentdt (1) ;//point amont //inlet point
aval={3tring) vProp.elementdt (2);//point aval //outlet point
f=(Doukble)vProp.elementic (4] ;

double deltalexpan=f.doubleValue()://puissance détente //expansion power
f=(Double)lvProp.elementt (12) ;2

double Qexpan=f.doubleValue();://chaleur détente //expansion heat

args[1l]=collectorName://capteur solaire //=zolar collector
wProp=proj.getProperties (args)

f=(Double)vProp.elementdt (4] ;

double solarHeat=f.doubleValue();//chaleur solaire //solar heat

ffealoul des performances globales du woteur et affichages

Jfoaloulates the overall motor energies and displays them on the driver screen
tauExpan value.setText (Util.aff dideltalexpan, 3)):
netPower_value.setText (Ucil.aff d(deltalexpantdeltaleompr, 3));
tauCompr_value.setText (Util.aff dideltalocompr, 3));

Q walue.zetText (Util.aff d(Qexpan+solarHeat, 3)):;

eta value.zetText (Util.aff di(-deltalexpan-deltalcowpr)/ (Qexpan+solarHeat), 3)):
expaniieat_wvalue.setText (Util.aff d(Qexpan, 3)):
comprieat_value.setText (Util.aff d({Qcompr, 3));
solarleat_value.setText (Util.aff di{solarHeat, 3));

extCooling wvalue.setText (Util.aff di- (Qexpan+solarHeat+deltalexpantdeltaloompr+Qoompr), 3)) 2

2.2.3 Loading a driver

Loading a driver is done by selecting line "Driver frame" of simulator menu "Special". A combo then presents a
list of available drivers (Figure 2.3). Select the one you want to load (here "stirling"), then validate.

Select the type Select the type

|

[»

Pilote echangeur air stirling
Pilote echangeur other
Pilote compresseur Suppress
Pilote compresseur air
Pilote Diesel

stirling

Pilote vapeur

Pilote Frigo

-

‘ oK | | Cancel | OK ‘ | Cancel

Figure 2.3 : Selection of the driver Figure 2.4 : Suppression of a driver

THERMOPTIM volume 4 reference manual november 2010

When a driver is already loaded, line "Driver frame" shows the screen of figure 2.4, which lets you either return
to the driver loaded (line with its name), or select another, or delete the existing without replacing it. Only a
single driver may be associated with a project.

3 TECHNOLOGICAL DESIGN

To perform technological design, we have introduced new screens, complementary to those that perform the
phenomenological modeling. They can be activated by button "tech. design" placed in the usual screens of the
different components.

These new screens allow you to define the geometric characteristics representative of the different technologies
used and the parameters necessary to calculate them. For a given component, they obviously depend on the type
of technology used.

In the next section, we present a summary of the principles adopted for modeling heat exchangers, compressors,
turbines and expansion valves.

3.1 Component technological design

3.1.1 Heat exchangers

The most significant changes relate to heat exchangers, as earlier versions of Thermoptim only determine the UA
value, which is the product of the overall heat exchange coefficient U by the exchanger surface A, the two terms
not being evaluated separately. To resize a heat exchanger, that is to say calculate its surface, one must first
choose a geometric configuration, and second compute U, which depends on that configuration, thermophysical
properties of fluids, and operating conditions.

Recall that although the approach we have adopted in Thermoptim is unconventional, it has proved quite fruitful
for the study of complex systems: a heat exchanger ensures the coupling between two "exchange" processes, one
representing the hot fluid which is cooled, and the other the cold fluid which warms up. It follows that the
definition of the exchanger flow patterns and geometry is made at the process level, and not globally.

3.1.1.1 Calculation

The method for calculating the heat exchanger in off-design operation is based on that the NTU method. When
we know the two inlet temperatures and flow rates, an exchanger can be represented by a quadrupole, whose
generalized matrix formulation can be expressed in various ways, depending on temperatures known (see chapter
5 of Volume 1 of Energy Systems book).

In design mode, the calculation of a heat exchanger is done in three steps:

- knowing the inlet and outlet temperatures and flows of both fluids, we first determine the efficiency &,
and we deduce UA by the NTU method

- then U is estimated by correlations depending on the exchanger flow pattern and geometry

- the calculation of area A is deduced immediately: A = UA /U

In off-design mode, if we know the inlet temperatures and flow rates of two fluids, the area A of the exchanger
and its geometry (flow patterns and technological parameters), the calculation is done in three steps:

- determining U by correlations depending on the flow pattern and geometry of the exchanger ;

- calculating UA, product of U and A, and then NTU

- determining the effectiveness ¢ of the exchanger by the NTU method, and calculating the hot and cold
fluid temperatures

Usually we know the inlet temperatures Tfe and Tce of both fluids and their flows mc and mf, and we wish to

know the outlet temperatures Tcs and Tfs when known variables change. If we can determine the value of U, it is
possible to calculate R and NTU, to deduce € and determine Tcs and Tfs.

THERMOPTIM volume 4 reference manual november 2010

10

But other cases can also be solved: knowing Tfe, Tfs, mc, mf and U, we can calculate R, then NTU, deduce ¢,
and determine temperatures Tcs and Tce.

The first case could already be calculated by the phenomenological version of |
Thermoptim: if at least two temperatures are set, the "off-design" calculation
mode of the heat exchanger screen allows you to make the calculatation by
the NTU method. As indicated in section of Volume 2 of the reference
manual devoted to heat exchangers, this calculation applies to the study of an
heat exchanger already designed for which one seeks to understand how it .
behaves in off-design conditions. Thermoptim updates the exchanger from the Tfe: .
processs upstream links, then calculates the downstream temperatures. The I :
points and processes associated are updated based on results. : '

It is therefore possible to use this calculation mode by changing the UA value AH
as shown in the example discussed Section 4.
Figure 3.1 : multizone

3.1.1.2 Multizone heat exchangers exchangers

The calculation of multizone heat exchangers is more complex than simple ones, but it relies on the same
principle. Let us consider the case of the condenser of a cooling machine whose temperature / enthalpy diagram
is shown in Figure 3.1.

The refrigerant leaving the compressor is first desuperheated (T .-T,y), then it is condensed at constant
temperature, and then slightly subcooled (Tj-Tg). In this case, the calculation must be completed for each zone,

the surface of the heat exchanger being the sum of the three zone areas. Obviously, the heat transfer coefficients
are very different in these three areas.

In off-design mode, the total area remains constant, but its distribution among the three areas varies. A precise

calculation is therefore requested to seek the solution that corresponds to the same total area and meets all other
thermal and thermodynamic constraints.

3.1.1.3 Geometric setting

The geometric setting of heat exchangers is a difficult subject. Here we just introduce the quantities used,
without discussing the reasons for their choice.

cooling
free flow area 0.004a87 | ext_tube | Colburn correlation for single phase flow outside tubes - |
hydr. diameter 0.005 | correlation settings
length 0.044 local AP loss coeff. 0
surface factor 10 pressure drop 0.000011
fin effectiveness 0.a friction factor 0131273
Figure 3.2 : Condensor technological design screen

In order to calculate heat transfer coefficients and pressure drops, two geometrical quantities are particularly
important besides the surface of the exchanger: the section Ac devoted to the fluid flow, and the hydraulic
diameter dh. When the heat exchange coefficients of the fluids are very different, various devices such as fins
can be used to compensate for the difference between their values. This is called extended surfaces, which can be
characterized by an area factor f and a fin effectiveness 10.

These four parameters are those which have been chosen in Thermoptim to characterize heat transfer in each
fluid. The length of the exchanger is also used for certain calculations such as pressure drops.

In the heat exchanger technological design screen, the following conventions are adopted:
e type configuration (here, "cond") is selected in a combo

THERMOPTIM volume 4 reference manual november 2010

11

o "free flow area" represents the flow area Ac

e "hydr. Diameter is the usual hydraulic diameter dh

e '"length" is the length of the exchanger (used for calculating the boiling number Bo and the calculation of
pressure losses, not yet implemented in the two-phase case)

e "surface factor" is the area factor f for large arecas

e "fin effectiveness" is the fin effectiveness n0

3.1.1.4 Correlations for calculating the heat exchange coefficients

TABLEAU 12.1 TYPE CORRELATION TYPE DE FLUIDE
"int_tube" inside tubes Mac Adams single-phase
"ext_tube" outside tubes Colburn (Dittus Boettler) single-phase
"cond" condensation int. tubes Shah/Bivens two-phase
"cond_ext hor" horiz. cond. ext. tubes B1540 T/1 two-phase
"evap" evaporation Gungor Winterton two-phase
"air_coil" air coil Morisot air
"cool tower" evaporative cooling Colburn wet air
"flooded" flooded generic two-phase
"plate" plate generic single-phase

A major difficulty is the calculation of the overall exchange coefficient U, which depends on the fluid heat
transfer coefficients h, by the general formula below. Many correlations have been proposed in the literature, and
choosing the one best suited is not always obvious.

1 _ 1 e 1
UCAC Acno,chc A}\’ Aan,fhf

The default options offered by Thermoptim are given in the table above. It summarizes the proposed
configurations, indicating their type, the correlations used and the type of fluid to which they correspond. It is of
course possible to introduce others in additional external classes.

Watch out: for the calculations to be meaningful, it is imperative that the Thermoptim project units are expressed

in the SI system, that is to say that the flow is expressed in kg/s. Check out this item, preferably by introducing a
specific test in the driver.

3.1.2 Compressors

3.1.2.1 Volumetric compressors

A volumetric compressor is geometrically defined by its swept volume, and its technological parameters allow to
calculate its volumetric and isentropic efficiencies, according to its rotation speed, its load factor, and conditions
of suction and discharge.

The models implemented in Thermoptim are based on the assumption that the behavior of volumetric
compressors can be represented with reasonable accuracy by two parameters: the volumetric efficiency which
characterizes the actual swept volume, and the classical isentropic efficiency ns.

R’ef

A=a,—a
! 1 Pasp

THERMOPTIM volume 4 reference manual november 2010

2
Pref K

=K, +K, |2 _R 3
s 1K, [P 1 +Pref

asp

12

-R
P 2

asp

The calculation of a compressor is made as follows:

- the isentropic and volumetric efficiencies are calculated from the equations above
- if we know the rotation speed, the swept volume and the volumetric efficiency, the volumetric flow can

AN Vg

be calculated as: V = 50

vV ANV

- knowing the suction density v, we deduce the mass flow: m = v 60y

In design mode, the rotation speed or the swept volume required to provide the desired flow is determined. The
calculation is done taking into account the inlet and outlet pressures, and the flow value entered in the

compressor flow field.

In off-design mode, the compression ratio determines A and m, which sets the compressor flow and outlet
temperature. The sequence of calculations is as follows:
- 1) knowing the inlet and outlet conditions, the compression ratio P.¢/P,s, and suction volume v are

updated;

- 2) the volumetric and isentropic efficiencies A and n, and the actual flow are calculated knowing the

rotation speed N;

- 3) the flow volumeV is deduced;

- 4)the compressor sets M =v V and spreads this value to connected components;
- 5) the useful work can then be calculated knowing the isentropic efficiency 1.

3.1.2.2 Turbocompressors

Turbocompressors can be
modeled in several ways.
We will use a similitude
approach by using two
characteristics: the flow
factor @, and the enthalpy
factor y, and we limit
ourselves here to the
simplifying assumption
that their reduced
characteristics (y, @)and
(n, ®)) can be represented
by simple curves of
parabolic type (Figure
3.3).

(My)e 240mrT,
?” My, D3P, N

_ Ak 7200 |Ahy|

Figure 3.3 Simplified reduced characteristics of a turbocompressor

V=202 = 2p2N2

Other models are presented in the appendix.

THERMOPTIM volume 4 reference manual november 2010

13

3.1.3 Turbines

0.9 equation a trais parametres
A turbine is geometrically | %
defined by a section, and 0.8]
its technological 07 .
parameters used to '
calculate the isentropic 0.6
efficiency and the cone /
constant, depending on 0.5
the conditions of suction /
and discharge. 04 /
03
For the isentropic /
efficiency, it is often 0.2
possible to retain an 1 2 3 4 5 6 Te 7
equation analogous to the
;’a(’lumetrlc compressor Figure 3.4 : Three parameter equation
w.

o e\ R‘ef] Pref ?
77p—7]11m+(77max 7]11m) (Z|:Tmax Paspi| [Tmax Paspj| J

Note that it is expressed linearly as a function of expansion ratio and its square. Its parameters have the
advantage of having a physical meaning.

Niim 1S the asymptotic value of isentropic efficiency for the high expansion ratio, and 1.« the maximum
performance obtained for expansion ratio equal to Tpy.

The flow calculation is done using the Stodola rule, which can be expressed as follows, KO being the cone
constant:

Pin — R0 P_ll’l
Usually, we take k = 1, which corresponds to a quadratic form. If the flow is shocked, this relation is simplified
AT, = Cst
as ~p = Cste.

in

rln Tin 1- [Pout](kﬂ)/k

Other models are presented in the appendix.
3.1.4 Expansion valves

The technological design of valves is taken into account in a simplified way, because we consider that their
dynamics is much faster than that of other cycle components, and therefore they act as regulators.
The only parameter introduced at this level is the overheating value.

3.2 Computer Implementation

The structures of external classes allowing to address the technological design and off-design operation for the
various components of Thermoptim’s core have a number of similarities with those described in Volume 3, but
also some differences that are explained by their characteristics. We will present them in due time.

As major developments have focused on compressors and heat exchangers, they shall be presented here.

THERMOPTIM volume 4 reference manual november 2010

14

3.2.1 General Principles

Firstly, we must ensure consistency with the "phenomenological" Thermoptim classes, which need to perform
their calculations in the same way, technological screens being present or not.

This implies in particular that the technological screens should be separate from the "phenomenological” ones.

Then we decided to outsource as much as possible computer implementation so that users can customize the
calculations as much as they want. Indeed, it is virtually impossible on the one hand to find completely generic
formulations given the multiplicity of technological options, and on the other hand to develop algorithms robust
enough to solve the corresponding sets of equations. By outsourcing these classes, users can relatively easily
adapt them to the specific problems they face.

We therefore limited ourselves to make available a working infrastructure which should significantly facilitate
their task.

In principle, we believe that calculations of technological design and off-design should be performed in external
classes, so that those we have built into the core are essentially devoted to allow communication between it and
external classes.

Indeed, the core objects being not directly accessible from the outside, the information exchange needs to be
made following rules that are a little binding. We sought to make it as flexible and user-friendly as possible,
further than was possible using communication methods presented in Volume 3. The methods we have
implemented for this purpose are documented in the appendix.

3.2.2 Structure

In the component screens, button "tech. design" provides access to the technological setting screen. The
technological setting screens can be managed centrally from the menu line "Technological design screens" of the
"Technological Design" simulator menu.

The TechnoDesign class is the superclass of the technological setting screens. It is subclassed by screens specific
to each component type, according to the principle presented Section 2.3 of Volume 3.

Method makeDesign() of TechnoDesign actually implements the technological design.

In TechnoDesign, classes derived from JPanel allow to change the settings according to the technological
choices made.

External mother classes representative of the main types of components have been prepared. They are intended
to be subclassed by users depending on their requirements.

The only way to instantiate the TechnoDesign recognized by the core is to do it in an external driver, then load
them in Vector vTechno of this driver. Therefore, they become visible from the core and may be associated with
their components. This choice means that the external drivers play a major role in the technological design and
off-design operation.

Saving technological settings is done by the driver at the end of project files. The last line must end with a
newline ("\ n"). Some TechnoDesign may require several lines (it is the case for heat exchangers, which use one

for the overall results, and one for each fluid, as well as for thermocouplers who use two).

All technological design classes inherit from class extThopt.ExtTechnoDesign which has a JPanel called
JPanell, in which is designed the GUI.

It has two constructors :

public ExtTechnoDesign(Projet proj, String componentName, PointThopt amont, PointThopt aval){

}

THERMOPTIM volume 4 reference manual november 2010

15

public ExtTechnoDesign(Projet proj, String componentName) {

}

The first assumes that the user defines his own upstream and downstream PointThopt, while the latter
instantiates them automatically from the project properties, giving it greater genericity.

The PointThopt presented in appendix, which are kinds of external clones of the core points, give access to
upstream and downstream states. The constructor instantiates a CorpsThopt (see Appendix) to help perform

some thermodynamic calculations.

Method updateDeltaH() is used to update the enthalpy balance of the component. This class also has a method
getFlow(), which allows to update the flow from the core.

We comment here two implementation examples, related to compressors and heat exchangers, which are used in
the examples in this volume. Others are constructed similarly.

3.2.2.1 Volumetric compressors

The VolumCompr class includes:

- method setupPanel(), which builds the JPanel in the technological screen GUI, which is not detailed here. This
interface allows to enter the necessary settings.
- generic methods for calculating the isentropic efficiency and flow, and display them on screen.

The constructors are:

public VolumCompr(Projet proj, String compressorName, PointThopt amont, PointThopt aval){
super(proj, compressorName, amont, aval);
this.compressorName=componentName;
setupPanel();

}

public VolumCompr(Projet proj, String compressorName){
super(proj, compressorName);
this.compressorName=componentName;
setupPanel();

}

They call for ExtTechnoDesign constructors, then, in order to use the specific name of compressorName, they
identify it with componentName, and finally, they build the JPanel.

This class defines in particular the two methods for calculating isentropic and volumetric efficiencies:

double getRisentr(){
K1=Utillit d(K1_value.getText());
K2=Util.lit d(K2 value.getText());
K3=Util.lit d(K3 value.getText());
R1=Util.lit d(R1 value.getText());
R2=UtiLlit d(R2 value.getText());

double r_compr=aval.P/amont.P;

double risentr=0.5;

if(R1*R1+R2*R2==0)risentr=K 1+K2/r_compr+K3/r_compr/r_compr;//3 parameter equation
else risentr=K1+K2*(r_compr-R1)*(r_compr-R1)+K3/(r_compr-R2);
risentr_value.setText(Util.aff d(risentr,7));

return risentr;

THERMOPTIM volume 4 reference manual november 2010

16

double getLambdaVol(){
a0=Util.lit d(a0_value.getText());
alpha=Util.lit_d(alpha_value.getText());

double r_compr=aval.P/amont.P;

double lambda= a0-alpha*r compr;

display value.setText(Util.aff d(lambda,7));
return lambda;

}

Saving the parameter values is done using method saveCompParameters(), which, as we said above, should end
with a line feed character.

public String saveCompParameters() {
String h="alpha value="+alpha_ value.getText()+tab
+"K1 value="+K1 value.getText()+tab
+"K2 value="+K2 value.getText()+tab
+"K3 value="+K3 value.getText()+tab
+"R1 value="+R1 value.getText()+tab
+"R2 value="+R2 value.getText()+tab
+"N_value="+N_value.getText()+tab
+"Vs_value="+Vs_value.getText()+tab
+"Device_number="+deviceNumber value.getText()
+"n";//retour a la ligne impératif //compulsory line feed
return h;
H
3.2.2.2 Heat exchangers

A notable difference between a heat exchanger and a compressor is that the second is a single component, while
the first is a thermal coupling between two exchange processes. However, the thermal coupling equations are the
same for all types of heat exchangers that Thermoptim can calculate, with one exception: multizone exchangers
often occur as exchange areas in which liquid and vapor two-phase boundaries are evolving over time. It is
therefore impossible to assign to each a fixed area: they must be continually recalculated, even if the total area is
known.

The heat exchanger TechnoDesign is called TechnoHx. In design mode, it calculates U and proposes a value of
the exchanger surface A. It performs its calculations by estimating all thermophysical properties of fluids.
Chapter 13 of volume 3 of the Energy Systems book specifies how they are determined.

The TechnoDesign for exchange processes is TechnoExch. It also allows to calculate the pressure drop when
methods are implemented. To ensure a seamless calculation between the two processes and the heat exchanger it
connects, TechnoHx makes a direct call to both TechnoExch associated, which are loaded on its screen. The
process TechnoExch of an exchanger are thus not instantiated independently of theTechnoHx.

Different flow patterns have been introduced: they all inherit from FlowConfig and are selected in the
TechnoExch screen. They make the calculation of thermophysical properties and the Nusselt number, especially
for multi-zone heat exchangers.

In summary:

- TechnoHx introduces the exchanger surface, designs it (makeDesign ()), manages displays of calculations of
thermophysical properties and instantiates cold and hot TechnoExch

- the cold and hot TechnoExch make the calculations of thermophysical properties and manage FlowConfig
through a ComboBox. The JPanel for TechnoHexch appears in the TechnoHx window.

- FlowConfig implement the correlations for calculating the exchange coefficients and pressure drop

- the SettingsFrame of a FlowConfig allow to modify its settings.

The TechnoHx class constructor is as follows. It differs from the previous one because of the special structure of
the class. It begins by retrieving the names of hot and cold processs that it matches, instantiates four PointThopt

THERMOPTIM volume 4 reference manual november 2010

17

to get access to inlet and outlet states of both fluids, and builds their technological displays. He then tells each
what is his counterpart. Finally, it configures the screen.

public TechnoHx(Projet proj, String hXname, PointThopt amontHot, PointThopt avalHot, PointThopt
amontCold, PointThopt avalCold){
this();
this.proj=proj;
this.hXname=hXname;
String[] args=new String[2];
args[0]="heatEx";
args[1][=hXname;
Vector vProp=proj.getProperties(args);
hotFluid=(String)vProp.elementAt(0);
coldFluid=(String)vProp.elementAt(1);

this.amontHot=amontHot;
this.amontCold=amontCold;
this.avalHot=avalHot;
this.avalCold=avalCold;

techc=new TechnoExch(proj, this, hotFluid, amontHot, avalHot);
techf=new TechnoExch(proj, this, coldFluid, amontCold, avalCold);

techc.setOtherTechnoExch();
techf.setOtherTechnoExch();

JLabCompName.setText(hXname);
hotName.setText(hotFluid);
coldName.setText(coldFluid);
setupPanel();

setupTechHx();

}

The class then implements a variety of methods to perform thermodynamic calculations.

The TechnoDesign constructor of "exchange" processes is similar to that of the compressor. There are actually
three variants, their signatures differing because of the need for them to know whether they are connected to a
heat exchanger (TechnoHx), a thermocoupler (TechnoT) or are isolated.

public TechnoExch(Projet proj, TechnoHx tHx, String exchangeName, PointThopt amont, PointThopt aval){
this(proj, exchangeName, amont, aval);
this.tHx=tHx;

}

public TechnoExch(Projet proj, String exchangeName, PointThopt amont, PointThopt aval){
super(proj, exchangeName, amont, aval);
this.exchangeName=componentName;
setupPanel();
JLabCompName.setText(exchangeName);
fc=new IntTubeConfig(this);
setupListeConf();

}

TechnoExch being the technological design class of exchange processes, it plays an essential role in the study of
heat exchangers.

Global variables are defined as follows:
boolean diph;
TechnoHx tHx;
TechnoExch otherTe;

THERMOPTIM volume 4 reference manual november 2010

18

TechnoTC tTc;
public FlowConfig fc;
SettingsFrame sf;
String[]listeConf;

diph allows one to specify that the calculation of exchange coefficients must be done in two phase mode.

tHx is the calling TechnoHx instance when TechnoExch is part of a heat exchanger.

otherTe is the second exchanger TechnoDesign in this case.

tTc is the calling TechnoTC instance when TechnoExch is part of a thermocoupler.

fc is the FlowConfig defining the flow pattern.

sf is the setting screen for the FlowConfig correlation coefficients

listeConf is a list of flow patterns available that allows the user to specify the type of flow pattern in which the
fluid flows, and therefore the equations to be used to calculate the heat exchange coefficients.

Method setupListeConf() dynamically builds the FlowConfig list when loading Thermoptim, depending on
external classes that define them. The codes defining these flow patterns and their description are loaded into a
dropdown list so the user can make his choice. In case of doubt, if the list is too narrow, you can display the
corresponding parameter by clicking on "correlation settings, which allows you to read the entire description (see
Figure 3.11).

The constructor of the superclass is given below. It combines to the FlowConfig the TechnoExch who called on
it, and initializes values needed to calculate the Nusselt number.

public FlowConfig (TechnoExch te){
this.te=te;
C1=0.023;a_Re=0.8;b_Pr=0.4;c_Visc=0.14;RR=0.001;
te.JLabel13.setText("length");
otherTe=te.otherTe;

}

To add another configuration, simply subclass FlowConfig and give it a reference that is not already used, then
place the class in extThopt.zip or extUser.zip. It will automatically be included in listeConf.

Pressure drops are calculated in FlowConfig as follows.

In laminar flow, the losses are proportional to the flow rate and fluid viscosity: f = 64/Re.
For smooth tubes, fis given by the Blasius formula (f = 0,316 Re 0-25) if Re < 30 000, or by the following
formula (0,0032 +0,221 Re™0-237) for higher values of Re.

For rough pipes in turbulent regime (Re> 2100) the friction coefficient is given by the Colebrook equation:

1 RR 2,51
7 = 0868589 ln[ﬁ+ﬁf]

& .
RR =) & = Absolute roughness of pipe

We can show that the implicit equation giving f can be approximated by:

1 _ RR .11 6.9
0T8I {5771 + Rl

The settings of SettingsFrame allow to calculate the pressure drop with the Colebrook formula if this option is
selected, or with the Blasius one otherwise.

In two-phase system, pressure drop calculation of can be very complex, in particular because the different areas
of the heat exchanger must first be determined.

In the vapor-liquid equilibrium zone, we use the approximate formula for the nuclear steam generator proposed
by Herre and Gallori adjusted to take account of an nonzero quality inlet.

APgigr= @ APyig

THERMOPTIM volume 4 reference manual november 2010

19

P [-
o= [1+ke-xd - D+ Ix-xd € - DT
v %

The pressure drop is thus calculated from the saturated liquid state using this factor.
3.2.3 Technological and simulation screen

A technological and simulation screen has been added to the simulator. It is accessible from line "technological
design screens" of the "Technological design" simulator menu (Figure 3.5), or by typing Ctrl T. It has two main
tables placed in its left side. The upper one provides access to all TechnoDesign instantiated by the driver and
loaded into Vector vTechno. Double-clicking on a line opens the TechnoDesign selected. The one below
provides quick access to certain Thermoptim points or processes described as observed because we want to
observe their thermodynamic state.

Display technological frames Read settings
TR type - Save settings
evaporatar Heat exchanger TechnoBvaporator
condenser Heat exchanger TechnoCondensor
campressor campressian WolumCompr
Display obsenved types
narme | trpe |ﬂ|:|w rateIF‘(bar}| m ah T (" C)
COmpressor COMPression 1,3984 43 61
] paint 5,054 ihar) 11,08°C Calculate driver Stop
1 point 1,201 (han 7160
air inlet point 1 {han a8
¥| auto flow efficiency 1]
invalidated types |0 _| locked
useful energy 1]
calculable types |0 Recalculate purchased energy |0 Close
Figure 3.5 : Overall technological design tool screen

Buttons and displays at the bottom of the screen facilitate automatic recalculation, which can be triggered
without returning to the simulator main screen.

The two buttons "Calculate the driver" and "Stop" can start and stop the calculations of the driver without
blocking access to Thermoptim (it runs in a separate thread), which presents the advantage that it is possible to
access all the software functions while it conducts operations coded in the driver. Button "Stop" can stop the
calculations if necessary.

To use this feature requires that the calculation method of the driver be named calculatePilot(). Obviously, it is
recommended not to make setting changes while the driver runs, to avoid interference.

THERMOPTIM volume 4 reference manual november 2010

20

The two buttons at the top right, "Save Settings" and "Read Settings", allow you to save a technological setting
made by a driver, and read it by a similar one, which avoids having to re-enter all the values each time you

change driver.

3.2.4 Generic driver for creating technological screens

We show in Section 4 how to create screens by building technological drivers, which requires a minimum of
programming. This work is imperative when you want to perform off-design calculations, because it is then

necessary to take control of Thermoptim recalculation engine.

However, if you simply want to make the technological design of a project that only implements core
Thermoptim components, it is possible to automatically create technological screens using the generic driver that

we will briefly present. This avoids having to program one.

Open the Thermoptim

project and load the

generic driver by

: Design settings
choosing the one whose

Set the technelogical design screens

title is "generic techno

design pilot", in the list narmne | type TechnoDesign
of drivers, then click CoMmpressor Comprassion volumCompr

"Set the technological condenser HeatEx TechnoHx

design screens" (Figure evaporatar HeatEx TechnoHx

3.6). The list of
components for which
there are technological

Figure 3.6 : Generic driver screen (default initialization)

screens is displayed in the table with their name, type and technological screen class name instantiated by
default: VolumCompr for the compressor and TechnoHx for the heat exchangers in Figure 3.6 example.

In this example, this

initial setting is suitable

Design settings
for the compressor, but

Set the technological design screens

not for heat exchangers:

the condenser should be name | type

TechnoDesign

modeled by class compressor Compression WolumCompr
TechnoCondensor, and candenser HeatEx TechnoCondensar
the evaporator by evaparatar HeatEx TechnoBEvaparator
TechnoEvaporator.

Figure 3.7: Generic driver screen after selection
To change a

component’s TechnoDesign class, select its line and double-click. A message asks you to confirm your choice,

then displays a list of

available classes. Choose the
one you want and confirm.
After modifying the two heat

E%Technulugical design screens

exchanger classes, you get the

screen shown in Figure 3.7. Display technological frames

You can then access the

screens of these technological name type

class

components either from their evaporator Heat exchanger
own screens (button tech. condenser Heat exchanger
design") or from the cormpressar cormpression

technological and simulation
window presented in the

. . Figure 3.8 : Technological screen window
previous section. It can be

TechnoBvaporator
TechnoCondenso
WolumComm

opened from the simulator
screen (Figure 3.8).

THERMOPTIM volume 4 reference manual

november 2010

21

3.3 Example of heat exchanger design

3.3.1 Presentation and results

Consider a tube and fin heat exchanger intended to cool about 0.66 kg/min of air leaving a compressor at 5 bars
and 275 °C with a flow rate of 1.17 kg/min of cold water passing through a coil of two parallel tubes. The
diameter of the tube is 15 mm, and its thickness 1.5 mm. The spacing between the fins is 3 mm.

The exchanger can be easily modeled in Thermoptim.

air fdet afr coxtlet goTtie air
R e Tk A - *
4 4
o m o= 00117 gk _ m = 00117 kgt i
ol inlet T =275 fg;:lﬁ T = 6066 L alr cntlet
P =A5har P=A5hbar
H= 254 04 LTz m AHE 257 H=3554 klkz
argter outtlet cortie e
E Arater E rAteT - E
m = 0,02 kgt m = 0,02 (kgfs)
T = 1985 °C T = 5053 °C WrAteT cntlit
P = 15 bar P= libar
H= 24 58 LlLg H= 213 21 kg
Figure 3.9 : Example synoptic diagram

To design the heat exchanger, we set an effectiveness of 0.84.

Using the Thermoptim technological design screens, it is possible to calculate the overall heat exchange
coefficient and to deduce the area required to transmit the desired power.

This requires determining the hydraulic diameter dh and flow section Ac of both fluids.

Inside the tubes, dh is given, and the calculation of Ac is very simple: it is equal to the product of the number of
tubes by the tube section. Outside the tubes, the calculations are somewhat more complicated. dh is equal to 4
times the flow area by the wetted perimeter and Ac is the cross-sectional area available to the air.

We assumed that the fins multiplied the exchange surface by 4, their effectiveness being equal to 0.8.

These values must be entered in the heat exchanger technological design screen. After some trial and error, we
obtain a setting similar to that of figure 3.11.

The driver can then calculate the area needed, which is here equal to 0.067 m?2, the exchange coefficients being
669.3 W/m2/K on the air side, and 759.1 W/m?/K on the water side, leading to a global coefficient equal to 355.7
W/m2/K.

The heat exchanger will be comprised of two 90 cm tubes arranged in a 3 layer coil and traversing steel sheets
separated from each other by 3 mm, with a total extended area of 0.31 m?.

THERMOPTIM volume 4 reference manual november 2010

22

BRI
[Swwess | owse |

=
e | Came | | ERoww |

00238677450

0840110258

Figure 3.10 : Heat exchanger screen

0000225 tub 1 Moc s conslation o snge e owinid ubes__~

092 | consatonseings |
o |

Figure 3.11 : Technological design tool screen

THERMOPTIM volume 4 reference manual november 2010

23

As we said in the previous section, it is here possible to use the generic driver to build this technological screen.
However, as this simple example lends itself well to a first driver presentation, we explain below how to create
one.

3.3.2 Driver implementation

The driver class is called AirExchangerDriver. Its interface is simple and classical, we do not break it here.

3.3.2.1 Initializations

For the name of the exchanger, we could use the Project method getHxList(), but it requires the diagram to be
loaded in the diagram editor. To avoid this constraint, it can be declared in the code.

For the other initializations we use PointThopt instances, which are kind of clones of Thermoptim core points

giving easy access to their values. Four of these objects are instantiated, representing the inputs and outputs of
the two fluids. Here we have their names entered by hand, but it would be possible to automatically recognize
them.

fdinitializations for the simulation

Sfwmatech out: the names of points and componehts wust he correct, otherwise an e
hxMName="Exchanger";

amont Chaud=new PointThopt (proj, "air inlet™):

avalChaud=new PointThopt (pro]j, Tair outlet™):;

ammontFroid=new PointThopt (proj, "water inlet™):;

avalFroid=new PointThopt (proj, "water outlet™);

The screen technology is then instantiated and the Vector vTechno built :

ffinatantiation of the TechnoDesign in the exXternal class
technoEchangeur=new TechhoHx (proj, hxHNawe, amontChaud, avalChaud, ammontFroid, as
addTechnoWVector (technoEchangeur)

ffinitialization of the Technolesign in Thermoptim
setupTechnolbesigns (vwTechno) ;

The last line initializes the TechnoDesign when opening an existing project file or loading the original driver.
Without it, it does not appear in the TechnoDesign list of the technological and simulation screen of Figure 3.5.

3.3.2.2 Calculations

if ['hxName.equals ("))14{//initialisation de 1l'éwvaporateur
args=new String[2]:
args[0] ="heatEx":
args[1] =hxNaane;
wProp=proj.getProperties (args) ;
Douwble £=(Double)vProp.elementit (15) 2
Uhech=f.doubleValues () ;

amontChaud. getProperties () ;
avalChaud.getProperties (] ;
amontFroid.getProperties () ;
avalFroid.getProperties();

dfinitialisations du TechnoDesign
technoEchangeur . ULk=Ukech;
technoEchangeur .makeDesigni) ;

//faffichages

U walue.setText (Util.aff ditechnoEchangeur.getU(),4)):

Uhech value.setText (Util.aff d(Tiech,4)]:
LechReel=Tcil.lit_d(technoEchangeur.Abesign valus.getText ()]
LealeulatedEch value.setText (Ucil.aff diAechReel, 4));

THERMOPTIM volume 4 reference manual november 2010

24

The calculations here are very simple: using Project method getProperties(), the driver retrieves the values of UA
and AH. The exchanger is then calculated by method makeDesign() and the results are displayed on the screen.

3.3.2.3 Backup

In this example, there are no particular backups to make considering constant thermal resistance of fouling.
Standard methods for the backup of technological parameters will do.

Two ExtPilot methods, transferTechnoData() and setupTechnoDesigns(), are used to initialize the driver and
technological screen while opening an existing project file.

The first method groups all lines in the project file on technological screens and loads them in the driver until it
is built, and the second decodes these lines to perform its initialization, passing the values to the standard
TechnoExch methods, which in turn call the FlowConfig ones.

The last line of setupTechnoDesigns(), proj.bindTechnoDesigns(vSettings), is used to link the TechnoDesign
used by the driver with the core components, so they can be displayed from their screens and from the tables of
the main technological and simulation screen.

4 OFF-DESIGN

The computer structure developed in order to perform technological design also allows to analyze the off-design
operation of models created with Thermoptim.

This type of analysis includes, however, additional difficulties: they require the modeller to be able first to write
the set of equations describing the coupling existing between the various components of the system studied, and
second to find an appropriate resolution algorithm.

The cases we have treated have shown us that there are two major additional challenges:

« the first concerns the development of physical phenomena equations. The behavior of the different components
must be analyzed carefully and modeled correctly, which may be far from simple. We propose in the examples
posted on the Thermoptim-Unit portal a number of models, but variants are also possible, and we have not
covered all interesting cases;

» the second corresponds to the resolution, usually numerical, of the model equations, which requires first to find
a suitable algorithm, and second to initialize it properly.

As our intention is primarily focused on applied thermodynamics, we mainly concentrated on the first difficulty.
Numerical tools that we offer use either Thermoptim own libraries, to perform simple searches by dichotomy, or
generic, like minPack, which is a set of classes allowing to make nonlinear optimization, in particular seek the
solution of systems of equations. It will be presented in Section 4.3.

We will start initially by treating a simple example that does not pose any problem of numerical resolution and
explain the code of the driver class.

4.1 Example

To illustrate the ability of Thermoptim to perform off-design calculations, we will study the behavior of a
volumetric air compressor that fills a compressed air storage volume at variable pressure. The compressed air is
cooled before storage with a water exchanger of the kind just presented.

The system can be easily modeled in Thermoptim and leads to a diagram like Figure 4.1, which differs from that
studied in the previous example by adding the compressor.

The technological design screen of the compressor is given in Figure 4.2. The heat exchanger is similar to the
previous one. They correspond to the physical models presented in Section 3.1 of this manual.

THERMOPTIM volume 4 reference manual november 2010

25

& air coTtie COMMpTesS e

[[
5 L 5 Laai
Eﬂr

4Tl
m = 00117 (kgk) m = 00117 (kgk)

Figure 4.1 : Example of compressor cooling

XX

m = 00117 (kgi)

iTee 4T T = 36 85 T = 275 *: Teftoidigeanart T = g 6 ¢
p=1ha COMAEIRSE o = § har Echurggam p=S5har
H=2kIkz H = 254 53 klkz maHE 2,57 H=3594kIks
eriTEe @41l Sortie el
A
m =002 kg m =002 kghs)
EriTeE edl T=1985C el T = 5063 *C
p = 15har P = libar
H= 84 53 kTkg H= 21321 kikg

eriTes Teseltodd

sortie 4

riTee TeceTyoiT

cortie e

Note, as we have not yet said that double-clicking the component name (here "compressor" located under the

small arrows in the upper right) provides access to its phenomenological thermodynamic screen.

WolumCompr
a0 vol efficiency 0.93528
alpha vol. efficiency 0.04
K1 0.801649
Kz -0.004
K3 -0.4
R1]
R2 0.3

1600 i Calculate N
Vs 0.000545001 () Calculate Vs

® Calculate m

rotation speed

Figure 4.2 : Compressor screen

[

compresseur

isentropic efficiency

flow rate

volumetric efficiency

Quitter

0.6953071
001173
0.7352800

4.1.1 Results

Once the driver made, it is very easy to make the compression ratio vary in order to get the evolution of the main
variables when the pressure of the tank changes. They can be processed with the Thermoptim simulation files
Excel post-treatment macro presented in Volume 1 of the reference manual. Simply save the project file under a
different name after each simulation, then load these files into the macro and extract the interesting values.

Figure 4.3 shows, as a function of the storage pressure, changes in the isentropic efficiency and compression
work, intake air flow, temperature of air entering the tank, exchanger load and U value.

THERMOPTIM volume 4 reference manual

november 2010

26

etais tau (kW)
0,75 45
0,7 -pum—
K\ 4 f_
0.65 \ /
3,5
a8 \ /
0,55 3
05 25
2 ’ ? 1 poan 12 3 ! 7 1 piban 13
m air (kg/s) T entree reservoir (°C)
0,013 62
0,012 —
0,011 \ 50
0,01 .
0,009
0,008 56 \\
0,007 \
0,008 54
3 7 o 1 P (bar) 13 5 7 2 1 P (bar) 1z
Delta H ech (kW) U (kw/m2/K)
4 360
— 355 -
35 / 350
345
: 340
25 335
330
7 4 325
5 7 E 11 ppay 13 s 2 11 pipar 13
Figure 4.3 : Simulation results

4.1.2 Driver implementation

The driver class is called
VsCompressorDriver and
its type is "Vs compressor
driver". Its interface being
simple and classic, we do
not break it here.

The driver screen is
shown in Figure 4.4.

To write the relevant
class, we start from the
exchanger driver one, and
complement it on two
points:

- first by instantiating and

Design settings

Initial settings

0.0232801
0.0671
calculated exchanger area [0.0671

heat exchanger UA

set exchanger area

heat exchanger U |34?.0950858 |

0.0098223

Figure 4.4 : Driver screen

flow rate

swept volume

air storage pressure

Calculate|
volumetric efficiency 06152800 |
isentropic efficiency [0.7007550 |

0.00055000
8.0

initializing the compressor technological screen, as for the heat exchanger;

THERMOPTIM volume 4 reference manual

november 2010

27

- second by introducing a button "Calculate" and defining calculations and changes in the simulator settings
which should be carried out when the downstream pressure varies.

4.1.2.1 Initializations

During initialization, after the PointThopt and the two TechnoDesign have been constructed, the compressor
swept volume Vs required to obtain the desired flow is determined on the basis of technological screen settings.

ffinitializations for the simulation

dfwatch out: the nawes of points and cowmponents mwust be correct, otherwise an error wil
hxMNatne="Exchancger™;

compressorName="compressor™;

avalChaud=new FPointThopt (proj, "storage inlet™):

amontChaud=new PointThopt (proj, "compressor outlet™);

amontCompr=new PointThopt (proj, "air inlet™):

srmontFroid=new PointThopt(proj, "water inlet™);

avalFroid=new FointThopt (proj, "water outlet™);

ffinstantiation of the Technolesign in the external classes

technoEchangeur=new TechhnoHx (proj, hxName, stoontChaud, svalChaud, swmontFroid, svalFroid
addTechnoVector (technoEchangeur)

technoCompr=new VolumCompr (proj, compressorName, amontCompr, amontChaud) !
addTechnoVector (technoCompr) 2

dfinitislization of the Technolesign in Thermoptim
setupTechnobesigns (vTechhno)

if ['compressorName .. equals ("")) {//initialigation of the compressor
args=new Itring[2]:
args[0]="process";
args[l] =compressoriarme;
vProp=pro]j.getProperties (args):;
SJtring amont=(3tring)vProp.elementit (1) ;
String aval=(3tring)vFPFrop.elementldt (2] ;
Double f=(DoublelvFrop.elementldt (3]
massFlow=Lf.doubleValue (] ;
N walue=Ttil.lit ditechnoCompr . N wvalue.getText(]];
lanbdaVol=technoCompr . getLambdavol () ;
Ve=massF low* 60 *amontCompr . V/N_value/ lambdaVol:
We_walue.setText (Ttil.aff d(Vs,.8));
technoCompr . SetVWs (W3] ;
technoComwpr . setl (N walue] ;

4.1.2.2 Calculations

The calculations are made as follows:

- first initialize the swept volume and update the compressor output pressure

- calculate its volumetric and isentropic efficiencies, determine the mass flow rate transferred and propagate it
upstream and dowstream

- recalculate the compressor and its downstream process, knowing that, set as isobaric, it propagates the new
pressure

- update exchanger inlets and outlets and then recalculate the off-design operation after having updated the air
heat flow rate

- update the simulator and recalculate the project several times to ensure the stabilization of values.

This example illustrates even better than its predecessor the interest of the PointThopt used to communicate

between the driver and the simulator. The syntax of updates is much more readable than when using only Project
methods getProperties() and updatePoint().

THERMOPTIM volume 4 reference manual november 2010

28

wold hCalc actionFerformed|java.awt.event. ActionEvent ewvent)
{

Ve=Util.lit_d(Vs_value.getText ()} ;//reads the compressor swept volume
technoCompr .setVs (Vs
Preservoir=Util.lit_ d(P_wvalue.getText ()]

double UL ech=Util.lit_diUlech value.getText(]]:

amontChaud. P=FPreservoir;// updates the cowpressor outlet pressure
smnontChaud. update (!UPDATE_T, UPDATE P, !UPDATE X :
amontChaud, getProperties()

massFlow=technoCompr . getMassFlow (amont Compr . W) ;
double eta_is=technDCDmpr.gEtRisentrE]:// calculates compressor isentropic efficiency
lawbdaVol=technoComwpr . getLarddaVWol () ;

ffrecaloulates the compressor and the downstream process

updateprocess (cowmpressorName, "Compression”, RECALCULATE, IS 3ET FLOW, UPDATE FLOW, massFlo
amontChaud, getProperties()

updateprocess ("refroidissement”, "Exchange", RECALCULATE, IS_SET FLOW, UFDATE FLOW, massFlo
updateprocess("entree air"”, "Exchange"”,RECALCULATE, IS S3ET_FLOW, UPDATE FLOW, massFlow, U

arontChaud. getProperties () ://updates heat exchanger inlets and outlets
avalChaud, getPropertcies ()

amontFroid.getProperties()

avalFroid.getPropertciesi) ;

The calculation of the compressor is done by methods getRisentr() and getLambdaVol() introduced previously.
Method updateprocess() modifies the compressor flow and isentropic efficiency and then recalculates it. Its
outlet point, called here "amontChaud" because it corresponds to the heat exchanger upstream hot fluid is then
updated.

The calculation of the heat exchanger is made as follows: first we make a calculation using method updateHx()
by setting the UA value read at the screen, UA_ech (heat exchanger is set for the off-design calculation mode so
that the value of UA is taken into account). This calculation allows the exchanger to initialize the new operating
conditions.

We then call method makeDesign() of TechnoDesign, which updates the value of U. The real UA is obtained by
multiplying the new U with the initial value of A (AechReel), which allows the exchanger to recalculate

properly.

Since U depends on the average temperatures of fluids, and therefore those of outlets, we iterate five times the
calculations to ensure proper stabilization, resetting each time UA_ech.

ffealoulates the heat exchanger (several iterations)

for (int i=0;i<5;i+4+){
updatelx (hxNamwe, RECALCULATE, UFDATE UL, UL ech, !'UFPDATE_EF3I, O, !UPDATE DTMIN, O, UFDATE C.
avalFroid.getProperties () ;
avalChaud.getProperties () ;

technoEchangeur . UA=UL ech;//calculates U
technoEchangeur .makelbesign() ;
double UT=technoEchangeur.getlU()

Thech=U*AechReesl/ 1000,/ /updates UL and recalculates the heat exchanger
Thech value.setText (Util.aff d(Ulech,)]
updateHx (hxNawme, BRECALCULATE, UPDATE UL, Ukech, !UPDATE EPSI, O, !UPDATE DTHIN, 0O, UPDATE CA

avalFroid.getProperties();
avalChaud.getProperties() ;

T _value.setTextc(Ucil.aff d(U,4)):
Th_ech=Tiech;

Jfupdates the simulator and displays

for (int j=0;3j<3;j++)proj.calcThopt ()
flow_value.zsetText (Util.aff dimwassFlow,4)):
eta_is_wvalue.setText (Util.aff dieta is,4)):

lambdaVol value.setText (Util.aff d{lambdaVol,4));

healculatedEch value.setText (technoEchangeur. Alesign values.getText ()]

THERMOPTIM volume 4 reference manual november 2010

29

4.1.2.3 Backup

Backups and updates on project loadings are similar to those of class PiloteEchangeur. Method setupPilot() has
been supplemented to reflect the existence of the compressor.

4.2 Using the model to simulate the filling of a compressed air storage

The results obtained can be used to simulate the filling of a compressed air storage. For this simulation, we
develop a second model, solved with Excel, with the following equations:

- the air mass M contained in the storage is equal to the initial mass plus the the integral of the mass flow

- the internal energy U is equal to the initial internal energy plus the integral of the product of the flow by the
enthalpy of air leaving the cooler, less the integral of losses by convection with ambient air

- the storage temperature is inferred from its internal energy

- the pressure is then calculated by the ideal gas law.

To find the flow and the enthalpy of the air stored, just make polynomial regressions from Thermoptim
simulations.

To find the flow, the compression work and the temperature of the air entering storage, simply do polynomial
regressions from Thermoptim simulations. Equations obtained, function of the compression ratio r, are:

m =-0,0006 r+0,0149

1=0,0019 1°- 0,0484 1+ 0,5322 r + 1,2806

Tair = 0,01 1° - 0,4735 r* + 4,9142 r + 46,699

The look of the results is given below, for a half m3 storage (diameter 80 cm, length 1 m), powered by a

compressor of Vs = 0.525 | swept volume. The pressure and temperature in storage, its mass and the compressor
workload are shown in figure 4.5.

P (bar) T stock (°C)
14 50
12 p—
0 — 40)"
8 / 30
5 7/ 20
4
3 10
a ol
a 100 200 200 433“5] 500 0 100 200 300 433“5] 500
M stock (kg) tau (kWh)
8 06

== 0,5
e L~

= ____.a 0,4

4 / 03 /
0,2
01 /-

0 0.0

0 100 200 300 400

t(s} 500] 1040 200 300 400, . 500
(5) tis)

Figure 4.5 : Filling the compressed air storage

THERMOPTIM volume 4 reference manual november 2010

30

This example has taught you how to write a driver to simulate the behavior in off-design operation regime of a
relatively simple thermodynamic system. For further investigation, we advise you to study the code of a cooling
machine driver available on the Thermoptim-UNIT portal %

4.3 Use of minpack solver for solving systems of nonlinear equations

In many cases, the equations describing the off-design behavior of an energy system are nonlinear, so that their
resolution is a difficult problem, particularly when the number of unknowns is high.

4.3.1 Presentation of minPack

Based on the method of Levendberg-Marquardt minPack is a set of algorithms developed in Fortran and then
translated to Java. This method combines the Gauss-Newton and gradient descent methods. Its main interest is to
be very robust and not to require initialization by an approximate solution.

Note that minPack is actually a set of minimization algorithms that can be used to find the minimum of the L2
residuals ||[F(X)|| a set of m non-linear equations in n unknowns F(X).

When n is equal to m, minPack can be used to solve the system of equations F(X) = 0, or at least seek a vector X
that is as close as possible to the solution.

You can also use minPack to identify a set of n parameters to fit a nonlinear equation on a set of m data.
4.3.2 Implementation of minPack

The set of classes required is included in library extBib.zip which must be declared in the classpath.

The implementation of Java minPack is done using an interface called optimization.Lmdif fcn, which forces the
calling class to have a method called fen().

This method fen() receives as key arguments a vector (array x[n]) containing the variables and a vector (array
fvec[m]) referring to residues of the functions one seeks to set to zero. As we have indicated, number m may
exceed the number of variables n, but it must be the same if we seek the solution of a system of equations.

Guiding the algorithm is done in practice by playing on two accuracy criteria, one on the residuals, and the other
on the accuracy of the calculation of partial derivatives, estimated by finite differences.

4.3.3 Example

To illustrate the use of minPack, we have written a test class called TestMinPack, which solves the equation
system corresponding to the intersection of a circle and a straight line. The code is as follows:

int info[] = new int[2];

int m = 2;//systéme de deux équations / / system of two equations

int n = 2;//a deux inconnues / / with two unknowns

int iflag[] = new int[2];

double fvec[] = new double[m+1];//vecteur des résidus / / vector of residuals
double x[] = new double[n+1];

double residu0;//norme L2 initiale

double residul;//norme L2 finale

System.out.print("\n\n\n\n\n problem dimensions: "+n+" "+ m+ "\n");

//initialisation des inconnues / / Initialization of the unknowns
x[1]=1;

? http://www.thermoptim.org/sections/logiciels/thermoptim/documentation/pilote-pour-cycle

THERMOPTIM volume 4 reference manual november 2010

31

iflag[1] = 0;

testMinPack.fcn(m,n,x,fvec,iflag);/premier appel pour calcul norme L2 initiale / / first call for calculating initial
L2

//norme L2 initiale

residu(= optimization.Minpack f77.enorm_f77(m,fvec);

testMinPack.nfev = 0;
testMinPack.njev = 0;

double epsi=0.0005;//précision globale demandée sur la convergence / precision required on the overall
convergence
double epsfcn = 1.e-6;//précision calcul des différences finies / / precision calculus of finite differences

//appel a minPack / / Call for minpack
optimization.Minpack f77.lmdif2_f77(testMinPack, m, n, x, fvec, epsi, epsfcn, info);

//norme L2 finale
residul = optimization.Minpack f77.enorm_f77(m,fvec);

//affichage des résultats // Display results

System.out.println("\n Initial L2 norm of the residuals: " + residu0 +
"\n Final L2 norm of the residuals: " + residul +
"\n Number of function evaluations: " + testMinPack.nfev +
"\n Number of Jacobian evaluations: " + testMinPack.njev +
"\n Info value: " + info[1]);

System.out.println();

System.out.println("precision: \t" + residul);

for(int i=1;i<=n;i++){//affichage de la solution

System.out.println("x["+i+"] \t" + x[i]);

}

function fcn is defined as follows:
public void fen(int m, int n, double x[], double fvec[], int iflag[]) {

if (iflag[1]==1) this.nfev++;
if (iflag[1]==2) this.njev++;

fvec[1] =x[1]*x[1 +x[2]*x[2]-1;
fvec[2] =3*x[1]+2*x[2]-1;
}

The results obtained are as follows, for initialization x[1] =1, Xx[2] =0 :
problem dimensions: 2 2

Initial L2 norm of the residuals: 2.0

Final L2 norm of the residuals: 2.39665398638067E-10
Number of function evaluations: 6

Number of Jacobian evaluations: 10

Info value: 2

precision: 2.39665398638067E-10
x[1] 0.7637079407212384
x[2] -0.6455619110818576

for initialization x[1] =0, x[2] =0

THERMOPTIM volume 4 reference manual november 2010

32

problem dimensions: 2 2

Initial L2 norm of the residuals: 1.4142135623730951
Final L2 norm of the residuals: 3.853333208070353E-10
Number of function evaluations: 9

Number of Jacobian evaluations: 12

Info value: 2

precision: 3.853333208070353E-10
x[1] -0.3021694793631984
x[2] 0.9532542190447976

This example illustrates on the hand how minPack can be used, but also the importance of initializing well the
problem. In our case, the problem has two solutions, but the algorithm is satisfied with the first that it finds,

which is the closest to the starting value.

THERMOPTIM volume 4 reference manual

november 2010

33

APPENDIX : Classes ExtPilot, PointThopt, CorpsThopt

In this appendix, we give some indications on the three classes ExtPilot, PointThopt and CorpsThopt that have
been defined to facilitate the creation of advanced external classes, including drivers.

Class ExtPilot

This is the superclass of all drivers. To secure the setting of the different methods allowing to update the core
Thermoptim objects it offers, it defines a number of directly understandable booleans:

boolean RECALCULATE=true, UPDATE_T=true, UPDATE_P=true, UPDATE_X=true,
UPDATE_ETA=true, UPDATE_UA=true, UPDATE_EPSI=true, UPDATE_FLOW-=true,
IS_SET_FLOW-=true, UPDATE_DTMIN=true;

In this way, the following code updating a point:
avalFroid.update(UPDATE T,!UPDATE P,/UPDATE X);
reads as only update the avalFroid point temperature, which is much more readable than :
avalFroid.update(true, false , false);
public void updateprocess(String name, String type, boolean recalculate, boolean isSetFlow, boolean
updateFlow, double flow,

boolean updateParam1, double param1, boolean updateParam?2, double param?2)
Available with several signatures, this method updates and recalculates a process. If recalculate is true, it is
recalculated, if isSetFlow if true, its flow is set, if updateFlow is true, its flow is set to flow, if updateParam is
true, the parameter value is set. The meaning of arg depends on the type and can be solved by referring to the

Project method updateProcess(), as defined in Volume 3 Reference Manual.

For example, the following code updates the process name compressorName, of the Compression type, request
the recalculation, sets the flow rate by changing its value, and modifies the isentropic efficiency:

updateprocess(compressorName, "Compression",RECALCULATE,IS SET FLOW, UPDATE FLOW,
massFlow, UPDATE_ETA, eta is);

Similarly, methods for updating and recalculating for heat exchangers and nodes exist:

public void updateHx(String name, boolean recalculate, boolean updateUA, double UA,
boolean updateEpsi, double epsi, boolean updateDTmin, double DTmin)

public void updateNode(String name, boolean recalculate, boolean updateEffectiveness, double epsi)

Both methods transferTechnoData () and setupTechnoDesigns () are used to initialize the driver and
technological screen while opening an existing project file.

The first method includes all lines in project file on technological screens and loads them in the driver when it is
built, and the second decodes these lines to perform its initialization, calling the standard TechnoExch methods,
which call on FlowConfig.

The last setupTechnoDesigns()line proj.bindTechnoDesigns(vSettings), is used to link the TechnoDesign used

by the driver with the core components, so they can be displayed from their screens and global tables of the
technological and simulation screen.

THERMOPTIM volume 4 reference manual november 2010

34

wold setupTechnolbesighs (Vector vwTechnolesign) |
Vector wiettings=new Vector():

if (cechnobesignbata.equals ("")) setupTechnolbesigns ()

elae{//caz ol il faut relire les données
dtringTokenizer st = new 3tringTokenizer (technoDesignData,"wn"):
while (st .hasMoreTokens ()] {

String ligne=st.nextTokeni):
String type=Util.extr walue(ligne, "compType™):;
String comp=Ucil.extr walus(ligne, "component™);
String wvalue=t"r;
if (type.ecquals ("HeatEx™)) {//échangeurs : 3 lignes dans ce cas
value=Util.extr_ wvalue(ligne, "ADlesign value");
for(int j=0;j<vTechnolesign.size () ;j++11
TechnoHx etd;
Ohject[]ob]jl=new Chiject[5]:
obhjl=({Chiject[])vTechno.elementdt (J);
etd=(TechnoHx)okbj1[1] :
String etdType=(S3tringiokbijl[4]:
String etdComp=(3tring)okijli[0];
if{ (comp.equals(etdComp)) & (type.equals (ecdTypel 1] 4
if (! {walue==null){
etd.Abesign value.setText (value] ;
H
ligne==st.nextToken():
etd.teche, readCompParameters (ligne) ;
ligne=st.nextToken()
etd.techf.readCompParamecters(ligne) ;
Chiect[]obi=new Chject[3]:
obij[0] =comp:
ocbi[l]=type:
obj[2]=etd;
viettings.addElement (obhi) ;
break:;

H
elze{//autres Technolesign
for (int j=0;]j)<vTechnolesign.size () :J++)1 1
ExtTechnolbesign etd:
Ohiject[]okbjl=new Chiject[S5] !
objl=(Chiject[])vTechno.elementdt (j)
etd=[ExtTechnolesignlokijl[1]
SJtring etdType=(3tringlobili[4]:
String etdComp= (3tringlokbijl[o]
if{ (comp.equals (etdComp)) & (type.equals (etdType) 114
etd.readCompParameters (ligne) ;
Ohiject[]okbj=new Chiject[3]:
ob]j[0] =comp;
obij[l] =tvype:
okbhij[2] =etd;
vaettings.addE lement (akbj) ;
break:

i
proj.bhindTechnolesigns (vaettings) ;

THERMOPTIM volume 4 reference manual november 2010

35

Class PointThopt

This class creates kinds of external clones of core Thermoptim points, in order to have easy access to their
values, which are not otherwise directly accessible. It provides more comfort and clarity than does the use of
Project methods getProperties() and updatePoint(), documented in Volume 3 Reference Manual. It includes
double values that store equivalents of core state variables:

double W,Epsi,QPrime, Tprime, Tr,VPrime,Cond, M_sec, corrFactor;
CorpsThopt corps;

During construction, it specifies the reference to the project and the name of the point in the simulator, which
allows Thermoptim to know which point is concerned. Caution, if an error occurs at this level, the PointThopt
cannot be properly instantiated.

public PointThopt(Projet proj, String name){
this.proj=proj;
this.name=name;

try{
getProperties();

catch(Exception e){
String msg = "Error constructing the PointCorps name: "+ name;
JOptionPane.showMessageDialog(new JFrame(), msg);
e.printStackTrace();
H
corps=new CorpsThopt(proj, nomCorps,lecorps);
H

PointThopt also offers methods to update its simulator equivalent, based on the same principle as those of
ExtPilot with signatures depending on the number of values to change.

public void update(boolean updateT, boolean updateP, boolean updateX, boolean updateCorrFactor, boolean
melHum, String task, double value)

A most common lighter version served as an example explaining the use of explicit ExtPilot booleans:

public void update(boolean updateT, boolean updateP, boolean updateX){
update(updateT, updateP, updateX, false, false, "", 0.);

}
Class CorpsThopt

This class creates kinds of clones of core Thermoptim substances, to have easy access to their values, which are
not otherwise directly accessible. It provides more comfort and clarity than does the use of Project methods
getProperties() and updateSubstance(), documented in Volume 3 Reference Manual. It has double variables that
store the equivalent of the core state variables:

public double T,P,X,V,UH,SM,M_sec,TC,PC,VC;

During construction, it specifies the reference to the project and the name of the substance in the simulator,
which allows Thermoptim to know which substance is concerned. Caution, if an error at this level, the
CorpsThopt cannot be properly instantiated.

public CorpsThopt(Projet proj, String name, Corps lecorps){
this.proj=proj;
this.name=name;
this.lecorps=lecorps;

}

THERMOPTIM volume 4 reference manual november 2010

36

An instantiation example is given in the PointThopt constructor.

Mmethod getSubstProperties() allows to update the values after a calculation on variable lecorps. The example
below shows using a CorpsThopt using PointThopt "amont":

CorpsThopt corps=new CorpsThopt(proj,amont.nomCorps, amont.lecorps);
corps.lecorps.CalcPropCorps(amont.T,amont.P,1.);
corps.getSubstProperties();

Usual functions are then directly accessible: for example, enthalpy is given by corps.H.

THERMOPTIM volume 4 reference manual november 2010

37

CLASSES FOR TECHNOLOGICAL DESIGN

The classes for compressors and exchangers have been presented Section 3.2. To introduce new classes, just
subclass existing ones, or create new ones based on the same model and place them in extThopt.zip or
extUser.zip.

Classes for turbines
Modeling turbine off-

design operation is a
problem that can be (] choked turbine TechnoSimpleTurb < >

addressed with varying Stodola constant W LLIEInE :
levels of difficulty. Quitter

Therefore we eta max 0.2
implemented a series of | ataim 0.85

different models, to tau max 1000 isentropic efficiency |0.5574

graduate the approach

depending on the [IrDGELE praoses |
available data and the (BT e 474834

the user level:

The basic class is
TechnoSimpleTurb. It rotation speed hson |
is based on the rule of
the cone and strictly
speaking only applies to
a single-stage turbine:

- Class TechnoMultiStageTurb extends the previous one considering that the rule of the cone of the multi-stage
turbine is the same as that of a single-stage turbine, the expansion ratio to take into account being the nth root of
the total expansion ratio if n is the number of stages. If n = 1, the behavior is the same as that of the previous
class;

- Class TechnoTurb extends the previous one, allowing to take into account both the existence of residual
velocity losses (RVL) at the turbine outlet, and also a deterioration in isentropic efficiency in the wet zone
following the Baumann rule;

- Class MultiStageMappedTurbine extends the previous one, the rule of the cone being this time replaced by a
mapping represented by a numerical adjustment to twenty parameters.

Figure A.1 : Basic simple-stage turbine technological design screen

TechnoSimpleTurb

This class defines the technological design parameters for turbines (figureA.1).

m 5[Tin
P = Cste (A.1)

.. m
Tin™3 = By - Bu (A.2)

The meaning of the fields is as follows:

e Stodola constant is the Stodola coefficient. If "choked turbine" is checked, the flow is regarded as shocking,
and the formula used is (A.1). Otherwise, it is (A.2);

e where n is represented by an 3 parameter equation, eta max is the maximum value, eta lim the limit for the
very high expansion rates, and tau max the abscissaof the maximum. If the first two values are equal, the
isentropic efficiency is constant;

e rotationspeed is the speed of rotation ;

TechnoMultiStageTurb

THERMOPTIM volume 4 reference manual november 2010

The difference between
its screen and the
preceding is the
introduction of a new
field, representing the
number of turbine
stages (figure A2).

Stodola's formula taken
into account is more
general than (A2), and
takes into account the
polytropic coefficient of
expansion.

TechnoTurb

Its screen (Figure A3)
differs from the
preceding by the
several new fields. As
mentioned above it
takes into account the
existence of residual
velocity losses (RVL)
at the turbine outlet,
and a reduction of the
isentropic efficiency in
the wet zone, according
to the Baumann rule
(A3).

The values of residual
velocity losses appear
on the left of the
screen.

MNhum = Ndry (1-a(l-x)

38

[Z] choked turbine

Stodola constant

1405485

TechnolMultiStageTurb

eta max 0.9z
eta lim 0.85
tau max 1.2
stage number 30

rotation speed

(<>

turhine

0.8698
flow rate 513.0412
4791.93

isentropic efficiency

Expansion ratio

Figure A.2 : Multi-stage turbine technological design screen

[C] choked turbine

140.5425

Stodola constant

eta max 0.9z
eta lim 0.85
tau max 1.2
stage number 30

D
([

[¥] residual velocity losses

alpha Baumann

rotation speed

outlet area (m2)

beta (%)

Diameter (mj)

residual veloc. losses 88.46

|

TechnoTurh

NN

turhine

0.8117
flow rate 512.5574
4591.82

isentropic efficiency

Expansion ratio

Figure A.3 : Multi-stage turbine technological design screen

The meaning of the fields is as follows:

e alpha Baumann is the coefficient o of equation (A.3);

e for calculating residual velocity losses, it is necessary to provide the outlet section and the diameter of the
turbine, as well as the output angle (3.

Class MultiStageMappedTurbine

THERMOPTIM volume 4 reference manual

(A3)

november 2010

39

This class, which
inherits from

. Turbine data
TechnoTurb deﬁnes the [choked turbine MappedTurbine < E

technological design turbine

parameters for turbines Quitter

represented by detailed | eta design 0.60775 5)
mapping, as defined in m design 50186221 p]
a modeling note 3 Rp design 500505696 PN s
ey //: A

. relative rot. speed 1.00000 My
The technological hes —
screen (ﬁgureA4) has relative isentr. eff. 0.6596 . - . — - —
in its upper right a label | refative flow rate 0.97863

" 1 n 1
(Turbme data)WhICh relative pressure ratio |0.3823

pI‘OVldCS access by stage number " o

double-clicking to the
screen displaying the alpha Baumann 1 iy
series of coefficients V] residual velocity losses
describing flow rate and
isentropic efficiency

characteristics (class

TurbineMapDataFrame, | Plameterin

ﬁgureA. 5) residual veloc. losses (60.34

outlet area (m2)

heta (%)

|

Figure A.4 : Turbine technological design screen with mapping

ST e map data Nmin |06 | Nmax |12 | file: dataSingleStage Turbine.txt

Expansion ratio map

a b C d

alpha 1396.061485 alpha -5474.126456 alpha T7T6.068495 alpha -3690.40637
heta -2136.372188 heta 8773244761 beta -11889.69474 beta 5328.282416
gamma 1020527558 gamma -4192.320101 gamma 5706.853798 gamma -2594.860703

Isentropic efficiency map

K1 K2 K3 R1 R2

alpha 4321699636 alpha -0.035519006 alpha 0.00576693 alpha -9.442132328 alpha 1.155953938
beta -3.692471833 beta 0.04067654 beta 0.044046645 heta 0.258742691 heta -0.222449611

1.32838111 | 001418116 | -0.080219249 | 1.621911188 | 0179680445 |
Reference seftings
PO (bar) [165 T0 (K} 830 Nref 3000
Rp ref 1 m ref 109 etaref 0.8

Load settings ‘ Open new file ‘ Cancel

Figure A5 : Turbine mapping setting screen

To the right of figureA.4 appears inset image corresponding to selected characteristics, if loaded. Otherwise the
label "Turbine maps" allows to open by double click an image loading screen (class MapIlmage).

The data files and images of maps must be placed in the "maps" directory from which both classes work. Their
names must be saved by the driver.

The mapping used here is expressed on a normalized flow. During design, we hold the nominal point of the
mapping on that the expansion process (later, we should be able to deduce the size, but this not yet
implemented), which provides the values "eta design","Rp design"and"m design"displayed in the left of the
screen.

3 http://www.thermoptim.org/SE/seances/C01/ModelisationSimplifiee Turbomachines.pdf

THERMOPTIM volume 4 reference manual november 2010

40

Below them appear dimensionless values needed to set the operating point on the mapping used. Their values are
of course adjusted to the turbine inlet conditions.

The value of the rotation speed can be set from the driver screen if desired.

Class TechnoNozzle

This class defines the
technological design

parameters for nozzles ¥l choked nozzle TechnoNozzle < >
(ﬁgureA.6). Stodola constant 2400 I

eta max 04

In off-design operation,
anozzle can be
modeled similarly to a

. tau max 3 isentropic efficiency 0.59000
turbine, and ! :
characterized by a flow rate 162.3274

Stodola constant and an
isentropic efficiency. Its | Figure A.6 : Design screen for a nozzle
screen corresponds to
the upper part of that of the simple-stage turbine.

eta lim 0.9

Class TechnoTurboCompr

This class defines the technological design parameters for turbocompressors.

The technological screen (figureA.7) uses a series of coefficients describing both characteristics.

mT
. 1
corrected reduced flow in the compressor mc = KNP, (A.4)
c 1
reduced compressor charact. W = Yeoeft (MC- OWimax)” + Wimax (A.5)

The parameters to
define are the
. aeneric turbocompressor < E
following: - ’—LED < e
compresseur
e Kc, compressor out
. . i uter
characteristic diameter 1.714
(equation (A.4));
e the compressor psi Max 1.01
diameter; psi coefficient -1 isentropic efficiency 0.7326

e v isrepresented

phi psi max 01 reduced flow Rate W
by a branch of a pasee |
parabola, defined [erGEe 149.0647

(equation (A.5)) by eta max 0.85

Vmaxs maximum eta coefficient 25
value, Ycoefr and phi eta max 0.38
(OWmax- abscissa of

the maximum Figure A.7 : Turbocompressor technological design screen
corrected flow mc;

e 1 is also represented by a branch of a parabola, defined by 1max, maximum value, Neoefr a0d OMmax,
abscissa of the maximum corrected flow mc.

The values of isentropic efficiency, flow and reduced mass flow appear on the right of the screen.

THERMOPTIM volume 4 reference manual november 2010

41

Class MultiStageMappedTurboCompr

This class, which inherits
from TechnoTurboCompr
defines the technological
design parameters for
turbocompressors
represented by detailed
mapping, as defined in the
modeling note quoted
above.

The technological screen
(figureA.8) has in its
upper right a label
("Compressor Data")
which provides access by
double-clicking to the
screen displaying the
series of coefficients
describing flow rate and
isentropic efficiency
characteristics (class

relative rot. speed
relative isentr. eff.
relative pressure ratio

relative flow rate

eta design
Rp design
m design

stage number

MuttiStageMappedTurboCompr < > Compressor data

1.35283
0.8156
7 86362

0.7852

0.81554
786362
0.92386

ﬂ

COMpressor

an

Figure A.8 : Design screen of a turbocompressor with mapping

TurboComprMapDataFrame, figureA.9).

To the right of the figureA.9 appears inset image corresponding to selected characteristics, if loaded. Otherwise
the label "Compressor data" allows to open by double click an image loading screen (class Maplmage).

The data files and images of maps must be placed in the "maps" directory from which both classes work. Their
names must be saved by the driver.

The mapping used here is expressed on a normalized flow. You must enter in the data file all reference values:
Po, T, Nref, Rpref, Myef, €tajs ref; as well as the interval of variation of the reduced speed (here 1.2 to 1.8).

During design, we hold the nominal point of the mapping on that the compression process (later, we should be
able to deduce the size, but this not yet implemented), which provides the compression rotation speed and values
"eta design","Rp design"and"m design"displayed in the left of the screen, and potentially modifiable.

Above them appear dimensionless values needed to set the operating point on the mapping used. Their values are
of course adjusted to the compressor inlet conditions.

Below these values is the field for defining the number of steps if you use a generic mapping (here 5).

The value of the rotation speed can be set from the driver screen if desired.

THERMOPTIM volume 4 reference manual

november 2010

42

TurbOCOH‘IPrESSOT map data o [z Nmax |1.8 file: dataCentrifrConan_1S_lsentrtxt

Surge line Max flow line

v * v X

alpha -0.136921682 alpha -2.514285714 alpha 0.76392613 alpha -3.644444444
heta 1.512965428 beta 3.714285714 heta 0.062458365 beta 5.904761905
gamma -0.21 353161 gamma -0.9523808452 gamma 0.320056518 gamima -1. 746031746

Compression ratio map

a b C d

alpha -1.08253966 alpha 2110757872 alpha 3.060368542 alpha 0.66229985

beta 1.016891134 beta -2.885820961 beta 2.91882978 beta -0.541643701

gamma -1.191929584 gamma 0.73TE35233 gamma -0.668278807 gamma [-0.37140048

Isentropic efficiency map

al az a3 ad

alpha 2832173548 alpha 7416629458 alpha -1.846395931 alpha 2434643322

heta -5.514708413 beta -13.00965072 heta 12.2213757 beta -3.6548908778
2.011299505 | 5.039113852 | -4.761350008 | 1.320385439 |

Reference settings

PO (bar) 1.4 TO (K) 260 Href 20000.

Rp ref ’17 m ref 1.2 eta ref 1.

Load settings ‘ ‘ Open new file ‘ Cancel ‘

Figure A.9 : Screen defining parameters of mapping of turbocompressor

Remarks on the refernce values of mapping files

The last lines of file mapping (bottom screen figures A.5 and A.9), provide the benchmarks that allow mapping
to adapt to a given problem. The pressure and inlet temperature and speed of rotation generally correspond to
those of the simulator for the nominal point. The ratio of compression / expansion and isentropic efficiency /
polytropic should be equal to 1 if the mapping corresponds to the compressor used, but they can be modified if
necessary. The value of the reference flow will typically close to the speed of compressor nominal point, since
the maps were prepared for flow rates normalized.

THERMOPTIM volume 4 reference manual november 2010

